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Abstract

The process of making a model ”forget” specific data, ma-
chine unlearning ensures important data that has had its
access revoked can be forgotten. This is especially impor-
tant if the data the model is being trained on raises secu-
rity and ethics concerns, like the GDPR mandate that gives
individuals the ”right to be forgotten”. In order to com-
ply with such ethical and legal responsibilities, there has to
be some method in place to remove data that is considered
to violate these conventions. Additionally, such techniques
are also vital in making sure erroneous data that skews the
model’s accuracy and fairness can be removed to make the
model better at the task at hand without retraining it com-
pletely. This is challenging because once the model learns
data, it becomes difficult to ”un-entangle” it from the pa-
rameters, and removing the entanglement is a challenge.
This paper aims to study the field of machine unlearning
in depth, starting from the origins and theory behind this
idea and then summarizing all the state-of-the-art methods
in this field. Finally, we discuss some of the problems that
lay ahead in research in this field, and how researchers can
hope to resolve them.

1. Introduction
With the ever-increasing influence of data and machine
learning models in day-to-day life, data has become king in
this information-driven era. With machine-learning models
being developed to deal with tasks that increase in complex-
ity cite models in real life here, a concern that grows with
such models is data privacy. With privacy concerns grow-
ing over data being used unfairly to train large machine-
learning models to be deployed in the real world and laws
like the General Data Protection Regulation being passed,
machine-learning scientists are faced with requests to delete
data from machine-learning models that have been de-
ployed. As a result, machine unlearning has grown in pop-
ularity, offering methods to ”unlearn” certain data points
while preserving the rest of the knowledge learned. Ma-

chine unlearning is the process of a model ”forgetting data”
that it has used to learn the task, something that is easier
said than done. When a model trains on data, it encodes in-
tricate dependencies and patterns from several data points,
thereby showing us that machine unlearning is not simply
a point-and-click delete operation that solves the problem.
Researchers have been looking into methods that make ma-
chine unlearning a viable task, making sure the model’s per-
formance is unaffected by the removal of this data.

Some of the key objectives and challenges of machine
unlearning are defined in figure 1. What we are more in-
terested in this paper are the challenges faced by machine
unlearning, with some of the most influential ones being:

• Selective Data Removal: Removing very specific pieces
of data remains a challenging task to do. It is also hard
to maintain the accuracy and overall performance of the
model while doing so.

• Provable Guarantees: To comply with ethics and reg-
ulatory guidelines, there has to be some empirical proof
that data has been removed. This mathematical proof is
often difficult to get, and methods that do exist are ex-
tremely limited in scope and applicability.

• Ethical Concerns: On the flip side, machine unlearning
may be used to skirt ethical regulations by unlearning data
that promotes bias and unfair treatment.

• Model Integrity and Stability: Unlearning can cripple
a model by inadvertently affecting other learned knowl-
edge if carried out incorrectly, and also affect explainabil-
ity and interpretability, something that is crucial in high-
stakes applications that run on machine learning models.

In this paper, we will be learning about the theory behind
machine unlearning, starting with the origins of this emerg-
ing field. The paper will summarize prevailing theories in
the field, then shift to contemporary methods in this field
that either prove or disprove these theories. Finally, this pa-
per aims to understand and discuss some of the challenges
and discuss potential solutions for them.



Figure 1. Some objectives and challenges in machine unlearning. Objectives are highlighted in blue, and challenges are in orange.

2. Machine Unlearning

Machine unlearning has many real-world applications that
claim to be where the concept originated. In reality, how-
ever, it was formulated as a privacy-preserving problem
[35]. This is further supported by [4, 8, 13, 14, 38] who
show us the true meaning of data deletion, and how to make
AI ”forget” us. To formally define machine unlearning, we
can assume that we have a sample space of data Z. If all the
datasets D that train a model are some combination of Z,
then the data that has to be removed Df that belongs to D.
Now, the machine unlearning algorithm A has to take Df as
input and return an unlearned model U that performs as well
as a retrained model A* on the remainder of the data after
removing Df. A problem that arises with machine learning
models is that a majority of the models trained are stochas-
tic, and therefore we cannot predict what impact each data
point has on the model itself.

Now that we have a formal definition of machine un-
learning, let’s look at some of the removal tasks it could be
faced with and some of the design requirements to build a
good machine unlearning algorithm.

2.1. Unlearning Tasks

We cannot make the assumption that all data removal re-
quests will be singular by nature. While data is cer-
tainly skewed towards such singular requests, such as in
[39, 43, 44] we must also take into consideration some of
the other types of requests to remove data from a machine
learning model. Some of these requests are given below,

from [35] in increasing order of size.
• Item Removal: Quite possibly the most popular under-

standing of the subject, a singular item removal is the
most common type of removal task that one can come
across [4].

• Feature and Class Removal: Data points that collec-
tively influence the model to make decisions in the in-
correct manner are seen in some cases where machine
unlearning is required. There are several attempts to han-
dle such cases, with methods ranging from using influ-
ence functions to unlearn features [46], to disentangle-
ment functions [20]. Similarly, methods that focus on
class unlearning also exist, as seen in [3, 41].

• Task Removal: With the rise of continual learning, task
removal is also becoming a common field of study in ma-
chine unlearning. Task removal is challenging because
of how the tasks are learned sequentially, which might
cause problems when unlearning. Some attempts at task
unlearning have been made in [27].

• Stream Removal: Finally, machine learning models can
be faced with streams of removal requests, such as in the
case where multiple users delete their accounts (following
a boycott, say). Gupta et al [21] attempt to deal with this
type of removal from machine learning.

2.2. Algorithm Requirements
There are some prerequisites that have to be satisfied for any
machine unlearning algorithm. This is explained in more
detail in the paper by Salvatore Mercuri’s paper [31]. Ide-
ally, a machine unlearning algorithm must be:



Figure 2. Approaches and Algorithms in Machine Unlearning

• Effective: Effectiveness is the comparison of the test pre-
dictions from the unlearned model to the naive retrained
model. An effective unlearning model has a comparable
performance to the naive model.

• Efficient: The ratio of time taken to obtain the unlearned
model to the retrained model, a small turnaround time is
crucial in developing a good machine unlearning algo-
rithm.

• Consistency: This is a measure of how close the untrained
model is to the naive retrained model in terms of pre-
diction of output. There are many ways of determining
consistency, with one of them being the distance between
the unlearned parameters and naive retrained parameters.
This method was used by Wu in their paper [47]. Con-
sistency can also be measured by the number of predic-
tions that are common between the naive retrained model
and the untrained model output by the algorithm, as in
[23]. Another measure of consistency was using KL Di-
vergence in Golatkar’s paper [15].

• Certifiability: There are various definitions for certifia-
bility available in the literature. There are many theo-
retical measures of certifiability such as in Guo’s paper
[19]. Other empirical measures of certifiability are used
in [23, 28, 40] and so on.

• Timeliness: Another critical design requirement, timeli-
ness refers to the difference in speed between develop-
ment of an unlearning model and just naive relearning of
a new model. There has to be a tradeoff between com-
pleteness and timeliness of an unlearning model.

• Model Agnostic: Any unlearning alorithm developed
must be agnostic to different learning techniques and
models, something that is challenging to do with the wide
array of available techniques in the machine learning field
right now.

3. Approaches to Machine Unlearning
With the formal definition and requirements of machine un-
learning listed, we can now shift our focus to classifying
contemporary approaches to the field. Figure 2 gives a
broad overview, followed by a breakdown by approach and
algorithm.

The different approaches are listed in the subsections that
follow.

3.1. Exact Unlearning
Exact unlearning is defined as the unlearned model being
the same as the naive retrained model. Since it is hard to
define exactness in machine learning and unlearning, where
most models operate on a black box assumption, we can
look at exact unlearning in two different ways [5, 14]:
• Exact Unlearning by weight distribution: The weight dis-

tribution of the unlearned model is the same as the weight
distribution from the naive retrained model.

• Exact Unlearning by distribution of output: The output
distribution from both models is the same.
Some exact unlearning approaches that exist are SISA

and DARE algorithms[4, 5]. However, to accurately judge



how good an unlearned model is, you would need to train
a model from scratch, which might be computationally ex-
pensive. As a result, there are other methods that are being
explored that are more viable.

3.2. Approximate Unlearning
In approximate learning, the focus is on reducing cost-
related constraints. This can either be done by:
• Perform computationally less costly actions on the final

weights [18, 19, 38]
• modify the architecture and filter the outputs[3]

While these two methods are the prevailing techniques
to develop unlearning techniques, a few other methods are
being studied for their use cases in situations where there is
no access to training data.

3.3. Zero Glance Unlearning
While traditional machine unlearning algorithms assume
that access to training data is always available, this might
not be the case. Some researchers like Tarun [41] prefer
to work in stricter settings where the trainers of the model
are not allowed to use data to even tweak or modify the
model’s weights. They further proposed a noise matrix for
the classes that maximizes loss on the classes that have to be
dropped. Then, the model is trained for 1 epoch to damage
the model parameters on the forgotten classes, thus induc-
ing unlearning.

3.4. Zero-shot Unlearning
Similarly, if the training data is not available, then the sce-
nario becomes zero-shot unlearning. In this case, there is a
strong focus on using error minimization and gated knowl-
edge transfer to achieve this objective, as seen in [10].

3.5. Few-shot Unlearning
Finally, in few-shot learning, the scenario is more similar to
zero-glance learning in that only a small portion of the data
to be deleted is available. In this case, ideas like model in-
version and influence approximation is used [36, 49]. These
methods often have limitations, however, like the first case,
which only works on models that use cross-entropy loss.

4. Algorithms in Machine Unlearning
We now move on to different algorithms that can be de-
veloped based on the requirements and approaches listed
above. While there are several algorithms, the main types
of algorithms that can be developed are:
• Model Agnostic: The definition of model agnostic al-

gorithms are frameworks of unlearning algorithms that
work on all models, regardless of the type or imple-
mentation of the model. Some sub-implementations in
this category include differential privacy[12, 22], certified

removal[15, 19, 32, 42], statistical query learning, and pa-
rameter sampling[6, 7, 9, 25, 34, 45, 51].

• Model Intrinsic: On the opposite end of the spectrum, we
have model intrinsic approaches that are limited by the
type of model. Although they are limited by the model
type, they are not necessarily narrow, since many machine
learning models can share the same type. Some subfields
in model intrinsic approaches include softmax classifiers,
linear and tree based models, DNN Based models, and
Bayesian models[2, 16, 17, 24, 26, 30, 33, 37, 48, 50].

• Data Driven: Finally, in data-driven approaches, the focus
is on speeding up retraining or untraining by using data
manipulation techniques. Bourtoule’s paper[4], in which
he introduces the SISA algorithm talks about splitting the
data into shards and slices. There is another group of re-
searchers who work on effective retraining by augmenting
the data[1, 11].

While this list is not conclusive, it lists the broad algo-
rithmic approaches that are being developed in the unlearn-
ing space.

5. Conclusion
In conclusion, machine unlearning is becoming a must-
study field for many, especially after landmark data protec-
tion mandates like GDPR[29]. This paper aimed to gather
information about the latest developments in this field, from
theory to methodologies that are being applied practically
worldwide to satisfy various guidelines on customer data
protection. While there is certainly a lot of development in
this field, there are still a lot of challenges that researchers
must overcome to find something that can be objectively
proven to remove data while being better than naive retrain-
ing.
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